A Practical Flying Car

Updated on January 19, 2019
Anthony Ratkov profile image

Anthony Ratkov lives in the suburbs of Detroit, Michigan. He works in Detroit's automobile industry.

Flying Car

The idea of a flying car is not as far-fetched as one might think. Considering the advances that have recently been made in developing lightweight materials, such as carbon-fiber composites, a flying car that an ordinary person can drive is entirely possible. My concept for a flying car is a car with a set of rotor blades that unfold. Four sets of rotor blades could be folded up inside the roof of the vehicle, and when the vehicle is in road mode, you wouldn't see these rotors. In road mode, the car would look like an ordinary car. To switch to flight mode, you must first stop the car, and extend the rotor blades. All four rotor blades would extend from the roof, and when they are fully extended, the rotor blades begin to spin, like the rotors on a helicopter. When the rotors are spinning sufficiently fast, the car would rise into the air and fly.

The illustration above shows the basic drive system for the car. The engine is an ordinary piston engine, that burns gasoline as fuel. The engine would be mounted in the center of the vehicle, for better weight distribution. If the engine were front-mounted, the front of the vehicle would be too heavy, and if the engine were rear-mounted, the rear end of the vehicle would be too heavy. A centrally mounted engine provides the best balance, for better stability, while flying. The engine would be covered with an engine cover that would include a few seats for passengers to sit on. The engine cover (and other interior components) would be made of carbon-fiber composite materials. There may be enough room for two passengers to sit on the engine cover, and an additional two passengers would sit at the front of the vehicle.

The engine would be connected to an electrical generator, by a shaft. The shaft would be made of a carbon-fiber composite material, to save weight. The generator would provide electricity to a set of electric motors; there would be one electric motor in each of the wheels. This type of electric drive system would weigh less than a drive system that has a heavy mechanical transmission.

The illustration above shows the electrical drive system for the rotors. Each of the four rotors has it's own electric motor to drive it. The electric motors that power the rotors receive electric power from the generator that is connected to the car's engine. During the flight mode, the rotors vary in speed to change the flight angle. To fly forward, the two rotors in the rear spin slightly faster than the rotors in the front, so the entire vehicle tilts forward and flies forward. To slow down, the two rotors in the front spin slightly faster than the two rotors in the back.

To make a left turn, the two rotors on the right side of the vehicle spin slightly faster than the rotors on the left side, so the vehicle turns to the left, vice versa for a right turn. With this type of variable-speed rotor system, the flying car would not need heavy and expensive variable-pitch rotors systems like the ones used on helicopters. The variable-speed rotor system I've described here is like the system used on small drones that carry cameras.


    0 of 8192 characters used
    Post Comment

    No comments yet.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, axleaddict.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://maven.io/company/pages/privacy

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)